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The molecular mechanism of a reaction in solution is reflected in its
transition-state ensemble and transition paths. We use a Bayesian
formula relating the equilibrium and transition-path ensembles to
identify transition states, rank reaction coordinates, and estimate
rate coefficients. We also introduce a variational procedure to
optimize reaction coordinates. The theory is illustrated with ap-
plications to protein folding and the dipole reorientation of an
ordered water chain inside a carbon nanotube. To describe the
folding of a simple model of a three-helix bundle protein, we
variationally optimize the weights of a projection onto the matrix
of native and nonnative amino acid contacts. The resulting one-
dimensional reaction coordinate captures the folding transition
state, with formation and packing of helix 2 and 3 constituting the
bottleneck for folding.

carbon nanotubes � chemical kinetics � protein folding � transition-state
theory � Grotthuss mechanism

Identifying the molecular mechanism of a reaction in solution,
such as protein folding or enzyme-catalyzed chemistry, poses

serious challenges because of the large number of coupled
degrees of freedom (1–5). The identification and characteriza-
tion of populated intermediate states along reaction paths is only
a first step. Understanding the mechanism at a molecular level
requires in addition the characterization of the transitions be-
tween those populated intermediates. The goal then is (i) to
identify what is common to the transitions in a rare molecular
reaction (or significant subsets thereof), and (ii) to find coordi-
nates that not only measure the progress of the reaction but also
are useful to characterize the reaction dynamics. The former
leads to the concept of a transition state, the latter to that of a
reaction coordinate.

Transition states can be thought of as configurations ‘‘inter-
mediate’’ between reactants and products. In one widely used
definition (6–11), the ensemble of transition states comprises
those configurations that have an equal probability of reaching
reactant and product regions. The chance of proceeding to
reactants or products first can be quantified by the splitting (or
commitment) probability introduced by Onsager for ion-pair
recombination (12). The splitting probability is defined as the
fraction of trajectories reaching the reactant region first when
initiated from a given configuration with random Maxwell–
Boltzmann velocities, and possibly averaged over noise for
stochastic dynamics. We note that one of the difficulties arising
from the above definition of transition states is that splitting
probabilities cannot be measured experimentally, not even in a
single-molecule measurement with atomic resolution. The
reason is that multiple initializations with precise atomic
positions, including those of solvent molecules, are required.
Here, we will show how this difficulty can be circumvented by
calculating average splitting probabilities (13) from transition-
path and equilibrium ensembles that can also be measured
experimentally.

From a good reaction coordinate, one may expect a dynam-
ically meaningful measure of the progress of a reaction. For-
mally, the projection operator formalism (1, 2) allows us to
obtain the dynamics along a chosen coordinate, but for poor
choices the projected dynamics will be highly non-Markovian

with long-time memory effects. In contrast, for a well chosen
coordinate, the dynamics will be essentially Markovian after a
brief initial period accounting for ‘‘molecular collisions’’ (14).
Qualitatively, this Markovian character implies that if all one
knows is the value of the reaction coordinate for a configuration
intermediate between reactants and products, one can predict
the likely fate of a trajectory initiated from that configuration.
Now the ‘‘likely fate’’ is the splitting probability! Thus, a good
reaction coordinate should parameterize the splitting probabil-
ity, such that the splitting probability of a configuration is a
function of the corresponding reaction coordinate alone (15, 16).
Berezhkovskii and Szabo (17) indeed found the optimal one-
dimensional reaction coordinate to be normal to the surface of
equal splitting probabilities [i.e., the separatrix (6, 18, 19)].

How does one identify transition states and good reaction
coordinates for a rare molecular reaction in condensed phase?
Answering this question requires access to an ensemble of
reactive trajectories that can be obtained most efficiently from
transition-path sampling (8–11, 13, 20, 21) or, if the transitions
are sufficiently frequent, from long equilibrium trajectories. We
note that partial information about reactive trajectories can also
be obtained from single-molecule measurements. As illustrated
in Fig. 1, a poor coordinate can often be distinguished from a
good one almost immediately. Projected onto the poor coordi-
nate, it may be possible to assign the state (i.e., reactant or
product) in the context of the time-series history. However,
equilibrium excursions from either state overlap in the projec-
tion. So if all one knows is the value of the reaction coordinate
(say, r � r‡) without the preceding history, one cannot assign the
state with confidence. In contrast, the good coordinate separates
the states, and equilibrium excursions from either state do not
overlap. Configurations with a reaction-coordinate value r � r‡

between reactant and product regions occur essentially only
during transition paths, such that r � r‡ should capture the
configurations of the transition state. One of the objectives of
this paper is to quantify such qualitative observations.

In the following, we will first introduce a probabilistic relation
between the equilibrium and transition-path ensembles. This
Bayesian expression allows us to define and identify a transition-
state ensemble. Moreover, it immediately leads to a quantitative
measure for the quality of a reaction coordinate that will allow
us to search systematically for optimal reaction coordinates. The
Bayesian relation between the equilibrium and transition-path
ensembles also leads to an expression for the rate coefficient and
to a simple transition-path sampling algorithm. To illustrate the
variational method of identifying reaction coordinates, we will
study the folding of a simple protein model. Transition-path
sampling and rate calculations will be illustrated for the slow
dipolar reorientation of a hydrogen-bonded water chain inside a
carbon nanotube.

Theory
Bayesian Relation Between Equilibrium and Transition-Path Ensem-
bles. In the following, we consider a molecular system with
deterministic Newtonian or stochastic Langevin dynamics in
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phase or configuration space. Following ref. 13, we define
transition paths as those trajectory segments that exit from the
reactant region A and reach the product region B without
crossing back into A, and vice versa. Because of the requirement
of no recrossing into A and B, the definitions of reactant and
product regions can be rather stringent and include only con-
figurations in the densely populated regions. (Incidentally, di-
viding up long equilibrium trajectories into segments separated
by transition paths that connect the ‘‘bottoms’’ of the free energy
wells also provides a convenient way of assigning intermediate
configurations to reactant and product states.)

We can now construct probability distributions in phase space
peq(x) and p(x�TP) for the equilibrium ensemble and the tran-
sition paths, respectively. x is a point in the full phase space in
which the dynamics is Markovian. These probability distribu-
tions are related to each other through a Bayesian expression for
conditional probabilities,

p�x�TP�p�TP� � p�TP�x�peq�x� , [1]

where we have introduced two probabilities (with values between
0 and 1): p(TP�x) is the probability for being on a transition path
(TP), given that the system is in x; and p(TP) is the fraction of
time spent in transition paths, averaged over long equilibrium
trajectories. Transition states can now be identified as those
points with the highest probability p(TP�x) that trajectories
passing through them are reactive (13), i.e., form transition paths
between reactants and products.

Relation to Splitting Probabilities. As shown in ref. 13, the condi-
tional probability p(TP�x) of being in a transition path is directly
related to the splitting probabilities �A(x) of reaching the
reactant region A first and �B(x) of reaching the product region
B first on trajectories initiated from x: p(TP�x) � �A(x) �B(x) �
�A(x)�B(x), where x � (�p, q) is a point in phase space with the
same position q as x � (p, q), but reversed momenta p. In
particular, for diffusive dynamics (i.e., Langevin dynamics in the

overdamped limit), we have p(TP�q) � 2�A(q)�B(q) with
�B(q) � 1 � �A(q). p(TP�q) reaches its maximum of 1⁄2 exactly
on the stochastic separatrix (6, 18, 19) where �A(q) � �B(q) �
1�2. For diffusive dynamics, the definition of transition states as
points with the highest probability p(TP�q) that trajectories
passing through them are transition paths is thus equivalent to
that using a ‘‘separatrix’’ or commitment probabilities (6–11).

Test for Reaction Coordinates. The Bayesian relation, Eq. 1, can be
generalized for projected dynamics. For a reaction coordinate
r � r(x), we have (13)

p�r�TP�p�TP� � p�TP�r�peq�r� , [2]

where p(TP�r) is the conditional average of p(TP�x) with an
equilibrium weight:

p�TP�r� �
�p�TP�x���r � r�x�	peq�x�dx

���r � r�x�	peq�x�dx
, [3]

with �(r) Dirac’s delta function.
For a good reaction coordinate r � r(x), p(TP�r) should have

a single sharp and high peak, collapsing the transition states with
a high value of p(TP�x) into a single value of r. With Eq. 2,
different reaction coordinates r(x) and r
(x) can be compared
quantitatively even without knowing the normalizing factor
p(TP) in Eq. 2, because p(TP) is identical for all projections.
Furthermore, the same criterion can be used in a variational
search for optimal reaction coordinates, as shown below. Fig. 1
C and F shows normalized p(TP�r) for projections onto a poor
and good coordinate: in the latter case, the maximum of p(TP�r)
is considerably higher and approaches the diffusive limit of 0.5.
In practice, the equilibrium probabilities peq(r) can be obtained
from umbrella sampling (in any suitable coordinate) and the
transition path probabilities p(r�TP) from transition-path sam-
pling (8–11, 13, 20, 21) or, if feasible, both can be obtained from
long equilibrium simulations with multiple transitions.

Fig. 1. Examples of ‘‘poor’’ and ‘‘good’’ reaction coordinates for the folding of a 47-residue Go� -like protein model. The poor coordinate (runi) is the projection
of the contact map onto a matrix with uniform weights, whereas the good coordinate (ropt) projects the contact map onto a matrix with optimized weights. (A
and D) Time series of each reaction coordinate for the same simulation segment. (B and E) The equilibrium probability of the reaction coordinate peq(r). (C and
F) The probability of being on a transition path given the value of r, p(TP�r). The green horizontal lines indicate ‘‘transition states’’ r � r‡. Only 1�10th of the
trajectories were used in the optimization to avoid ‘‘over-fitting,’’ but the complete trajectories were used to test r with p(TP�r). Insets in C and F show the
distributions of splitting probabilities for configurations at the maximum r � r‡ of p(TP�r).
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Estimating Reaction Rates. p(TP) is the fraction of time spent in
transition paths, averaged over long equilibrium trajectories.
Dividing by the average duration of a transition path, �tTP�, one
obtains the number of crossings between reactant and product
regions per unit time (13). This relation can be used to estimate

rate coefficients for the two-state model AL|;
k1

k2

B ,

2
k1

�1 � k2
�1 � 2cAk1 � 2cBk2 �

p�TP�

� tTP�
, [4]

where cA and cB are the equilibrium mole fractions of reactants
and products, respectively.

Transition-Path Sampling by Shooting. Transition-path sampling
(8–11, 20, 21) provides a powerful method to create and examine
reactive trajectories alone. To avoid storing of intermediate
paths, one can perform transition-path sampling by shooting
from a single arbitrary dividing surface (13). The computational
efficiency is determined by p(TP�r) and will therefore be lower
for a poor reaction coordinate. Initial configurations q1, q2, . . . ,
qn with reaction coordinates r‡ � r1 � r2 � . . . � rn, can be
obtained, e.g., by saving structures along an umbrella sampling
run biased toward r‡. From each of those structures, one (or
several) trajectory pairs would be initiated with Maxwell–
Boltzmann momenta pi and �pi. If a trajectory pair starting in
qi ends in opposite regions A and B, the combined trajectory
[with the momenta of one segment reversed (11)] forms a
transition path and enters the transition-path ensemble with a
relative weight of (13)

w � � �
intersections k

��k��1��1

, [5]

where the sum is over the points of intersection of the trajectory
with the dividing surface ri � r(qi) from which the trajectory was
started, and vk � dr/dt at time t � tk is the velocity normal to the
dividing surface at the kth intersection. In combination with Eq.
4, we obtain an estimate of the reaction rate coefficients (13),

2cAk1 � 2cBk2 � ��TPpeq�r i�� �
k

��k��1��1�, [6]

with �TP � 1 if the trajectory pair forms a transition path, and
0 otherwise. The average �. . .� in Eq. 6 is over combined forward
and backward paths initiated from an equilibrium ensemble of
phase points (pi, qi).

Results
Folding of a Small ‘‘Two-State’’ Protein. Protein folding is an
intrinsically high-dimensional problem, yet many proteins are
experimentally found to populate essentially only two states at
equilibrium (22). Transitions between those states (folded and
unfolded) are highly cooperative (23). It should thus be possible
to find low-dimensional coordinates that accurately describe the
process. In the following, we will identify and characterize such
coordinates for a simple protein model.

As an example, we have used a small (47 residue) three-helix
bundle protein that folds fast in experiments (24). A Go� -like
model of this protein was built from the experimental structure
(25) by using a standard procedure (26). The principal feature of
this model is that favorable interactions occur only between
residues in contact in the native state. Simulations were run by
using the CHARMM code (27).

The protein model exhibits essentially two-state transitions, as
monitored by a standard Go� -model reaction coordinate, the

fraction of native contacts Q (28): Langevin dynamics trajecto-
ries at the folding temperature (Tf) hop frequently between an
‘‘unfolded’’ state having Q � 0.4 and a folded state with Q � 0.9
(the folding and unfolding times �f and �u are �4  106 time
steps, respectively, at Tf). Therefore, in this case all analysis can
be performed on long equilibrium simulations, without the need
for transition-path sampling.

Although Q turns out to be quite a good reaction coordinate
(29), having a maximal p(TP�Q) of 0.40, we can attempt to
construct an equally good (or better) contact-based coordinate
with limited a priori information (as would be the case for
simulations with a more ‘‘realistic’’ transferable potential). Be-
cause folding trajectories are highly heterogeneous in Cartesian
space, we have chosen to follow the simulations in contact space.
Each configuration is described by a ‘‘contact matrix’’ q. A
reaction coordinate rw can be defined by projecting the contact
matrix onto an arbitrary weight matrix w, rw � �i,j wijqij/2. The
goal then is to find a set of 1,081 � 47  46/2 weights wij (with
wij � wji and wii � 0) that correspond to a good reaction
coordinate. In the contact matrix, qij is 1 when the distance
between i and j is �12.0 Å and 0 otherwise. This definition does
not discriminate between native and nonnative contacts, and
thus differs somewhat from that used for the fraction of native
contacts, Q, where the cutoff distance for residue pairs is
proportional to their distance in the native structure (26).
Therefore, Q cannot strictly be recovered with the basis set used
here.

We started our search from the least biased initial guess of
equal weights wuni. The projection of a trajectory segment at Tf
onto wuni is shown in Fig. 1 A. Because there are generally more
contacts formed in the folded state than the unfolded, especially
with a Go� -like potential, the corresponding reaction coordinate
runi turns out to be a reasonably good order parameter (i.e., it
separates folded and unfolded states). However, it is relatively
poor at identifying reactive states, having a maximal value of
p(TP�runi) of only 0.17 (Fig.1C; transition paths spanned Q �
0.4–0.9 without recrossings). In addition, there is a significant
transition-path probability p(TP�runi) for some large values of
runi, which is caused by contacts formed only on a few transition
paths that are not representative of most transitions.

To improve on this initial guess, we use p(TP�r) as a target
function for a variational optimization procedure. Specifically,
we optimize the maximum of a Gaussian fit to p(TP�r), to ensure
that all reactive configurations are condensed into a single peak
in p(TP�r). This procedure also suppresses subsidiary peaks from
atypical contacts corresponding to configurations q where
p(TP�q) is large, but both p(q�TP) and peq(q) are vanishingly
small. We use a Monte Carlo optimization procedure in which
we modify only relative weights by randomly changing two
elements, wij and wkl, in such a way as to preserve the magnitude
�i�j wij of w. Monte Carlo moves include swapping, sign reversal,
and reassigning fractions of the total weight. Reprojections on a
trial coordinate can then be evaluated efficiently, because only
the changes arising from the two altered elements need to be
calculated. Starting from the initial uniform matrix of weights
wuni, we applied this procedure recursively, accepting only moves
that increased the maximum of p(TP�r), to generate an optimal
matrix wopt. As shown in Fig. 1F, wopt gives a sharply peaked
distribution of p(TP�ropt) with a maximum of 0.39.

To test whether individual configurations at the maximum of
p(TP�ropt) were indeed part of the transition-state ensemble, we
calculated the distribution of the folding probability �F [or pfold
(7)]. Starting from 240 configurations close to the maximum of
p(TP�ropt), we initiated 100 trajectories each with random Max-
well–Boltzmann velocities at Tf. The fraction of runs that fold
first provides an estimate of the �F value of the starting
configuration. The distribution of �F for the 240 configurations
is sharply peaked close to 0.5 (Fig. 1F Inset); further, the mean
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value of 2�F(1 � �F) is 0.38, within the statistical error of the
maximum in the distribution of p(TP�ropt), as expected for
diffusive dynamics. In contrast, the distribution of �F for struc-
tures having maximal values of p(TP�runi) is peaked at 0 and 1.
Unlike the optimized coordinate ropt, the uniform projection runi
captures few transition-state configurations (Fig. 1C Inset), as is
expected from the substantially smaller maximum of p(TP�runi).
Even though ropt is a good reaction coordinate, it is not unique.
We find that near-optimal weight matrices generated by Me-
tropolis Monte Carlo search in weight space (at nonzero effec-
tive temperature) are degenerate, reflecting strong correlations
among contacts (i.e., presence of one contact implying likely
presence of another). Indeed, reaction coordinates of similar
quality could be found even if only 100 of 1,081 contacts were
included in the optimization (where the search randomly varied
both the set of 100 contacts and their weights; Fig. 5, which is
published as supporting information on the PNAS web site).

The optimized reaction coordinate ropt can be used to gain
insight into the folding mechanism. By selecting snapshots from
the trajectories corresponding to certain ropt projections, we can
identify critical events on the folding paths. Fig. 2 shows 10
structures each for three values of ropt that are not significantly
populated at equilibrium. On the unfolded side of the peak in
p(TP�ropt) (ropt � 6.5; Fig. 2 A), a largely unstructured ensemble
is obtained, although there is some local helical structure. The
remarkable feature of the transition state (ropt � 6.9; Fig. 2B) is

that the structure of helices 2 and 3 is almost completely
native-like, whereas helix 1 is partly formed, but not docked
against helices 2 and 3. On the folded side of the barrier (ropt �
7.4; Fig. 2C), all three helices are native-like, with slight disorder
in helix 1. On the basis of this analysis, we identify the formation
and packing of helices 2 and 3 as the bottleneck of folding.

Analysis of the contact maps for the folded and unfolded
protein, and for the transition state identified above (Fig. 2 D–F)
provides further information on the mechanism. The only sig-
nificant tertiary contacts present in the denatured state are those
between helices 1 and 2, which are present �30% of the time. In
the transition state, the additional contacts present are princi-
pally between helices 2 and 3 (80% formed), as suggested by Fig.
2B, and to a lesser extent between helices 1 and 3. The relative
importance of H2–H3 and H1–H3 interhelical contacts is also
reflected in the native-like appearance of the average weight

Fig. 3. Dipole flip of water chain inside carbon nanotube. (A) Equilibrium
free energy surface as a function of the total dipole moment (D, debye unit)
of the water chain from umbrella sampling (red line) and equilibrium MD
(blue squares). (B) Probability density of the dipole moment in the transition-
path ensemble. (C) Transition-path probability p(TP�Mz). (D) Reciprocal rate
coefficient k�1 for dipole flip from �66-ns equilibrium MD simulations (gray
shaded area indicates � one estimated standard deviation), �tTP��p(TP) (blue
rectangle indicates � one estimated standard deviation; red symbols with
error bars show estimates from individual histogram bins), and transition-
state theory (green line) (3, 42).

Fig. 2. Structures representing different values of the folding coordinate
ropt. Residues are colored on a blue–green–red color scale from the N to C
terminus and aligned with the native structure by using residues 17–47
(helices 2 and 3) only. (A) Folded side of the barrier (ropt � 7.4). (B) Transition
state at the maximum of p(TP�ropt) (ropt � 6.9). Note that helix 1 is at least
partially formed, but not properly docked against the scaffold of helices 2 and
3. (C) Unfolded side of the barrier (ropt � 6.5). (D–F) Fraction of contacts �qij�
present in the folded state (ropt � 7.2) (D), transition state (6.89 � ropt � 6.91)
(E), and unfolded state (ropt � 6.5) (F). Note that helical contacts are overem-
phasized by the 12-Å contact cutoff.
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matrix obtained by Metropolis Monte Carlo sampling, and of
restricted weight matrices with only 100 contacts (Fig. 6, which
is published as supporting information on the PNAS web site).
Of the helix–helix interaction energies in the native state, those
between helices 2 and 3 (H2–H3) are strongest (�7.6
kcal�mol�1), with weaker H1–H2 and H1–H3 interactions (�5.6
and �3.0 kcal�mol�1, respectively). In summary, the strongest
tertiary interaction (H2–H3) is absent from the unfolded state
(which may not at first be expected for a Go� -like model), and its
formation is the ‘‘decisive’’ step during folding.

Collective Dipole Flip of Ordered Water Chain in Nanotube. In the
previous example, we extracted transition paths from long
equilibrium simulations. Next, we will perform transition-path
sampling to collect otherwise rare reactive trajectories.

Molecular dynamics (MD) simulations of a short carbon
nanotube segment dissolved in water showed that water filled the
tube, forming hydrogen-bonded wires with collective dipole
orientations either up or down along the tube axis (30, 31). The
characteristic time for reorientations of the dipole chain was
estimated to be in the range of 2–3 ns, three orders of magnitude
slower than that of an individual water molecule in the bulk fluid.
Dipole reorientation is an essential step in the Grotthuss mech-
anism (32) of proton transfer along one-dimensionally ordered
water chains (33, 34). In a molecular model of the biological
proton pump cytochrome c oxidase, water-chain reorientations
induced by the changes in the electric fields in the protein active
site provide the coupling of redox chemistry to vectorial proton
translocation across the membrane (35).

In the following, we explore the dipole flip of ordered water
chains, first to illustrate the transition-path sampling algorithm
based on Eq. 5 and to test the accuracy of the rate estimates, Eqs.
4 and 6, and then to gain insight into the mechanism by which
such reorientations occur. As reaction coordinate, we chose the
total dipole moment Mz of water molecules inside the pore
projected onto its axis. A continuous and differentiable 3D
sigmoidal-type weight was used in summing the contributions of
water dipole moments to Mz for the tumbling nanotube. To
obtain an accurate equilibrium distribution of Mz, we performed
1-ns umbrella sampling runs with a harmonic bias for 12
overlapping windows. The simulation setup was as in ref. 30, with
AMBER code and parameters for the carbons (36), the three-site
water model TIP3P (37), a temperature of 300 K, and a pressure
of 1 bar (1 bar � 100 kPa). The simulation system contained one
(6,6)-type nanotube of �13.4-Å length and �8.1-Å diameter
together with �1,000 water molecules in a cubic box under
periodic boundary conditions. Transition-path sampling was
performed by running trajectories at constant energy and vol-
ume ‘‘forward’’ and ‘‘backward’’ in time (i.e., with initial mo-
menta �p) from starting configurations in the region near the

barrier, Mz � 0. The transition-path simulations were terminated
when �Mz� exceeded 9 debye (1 debye � 3.3356  10�30 m�C;
TIP3P dipole moment is 2.35 debye). The resulting 1,174 tran-
sition paths with a combined length of �15 ns were weighted
according to Eq. 5. Initial Maxwell–Boltzmann velocities for the
rigid water molecules were created by using a rigid-body repre-
sentation. With the leap-frog-type integrator using velocities at
half steps, care was taken that the forward and backward paths
were continuous and reversible at the starting configuration.

Fig. 3 summarizes the results for the thermodynamics and
kinetics of the water-dipole flip. We find that Eqs. 4 and 6 give
accurate rate coefficients when compared to long (66-ns) equi-
librium simulations. In comparison with the slow dipolar reori-
entation with a rate coefficient of �1/(2 ns), transition paths are
fast, with an average duration of only �2.0 ps. This time for
flipping a chain of five or six water molecules is comparable to
the characteristic time of �2 ps for reorientation of a single
TIP3P water molecule in the bulk fluid. The distribution of
transition-path durations tTP is well approximated by a gamma
distribution of mean 2 ps and standard deviation 1.4 ps (not
shown). On average, the transition paths cross the Mz � 0
dividing surface seven times, with a roughly exponential distri-
bution of the (odd) number of crossings, suggesting ‘‘diffusive’’
dynamics on the broad barrier top (Fig. 3D). Accordingly, the
relative weights of the paths created by straightforward shooting,
Eq. 5, are distributed broadly, and only about 15% of the paths
contribute to the top 95% of the relative weights.

The molecular configurations along transition paths differ
significantly from those seen in equilibrium trajectories. In
particular, we find that the dipole moment distribution p(Mz�TP)
in the transition-path ensemble peaks near Mz � 0. At equilib-
rium, Mz � 0 is at the center of an �7–8 kBT high free-energy
barrier and thus rarely visited. The terrace-like steps in p(Mz�TP)
indicate that during transition paths, dipole flips of individual
water molecules have discrete character. Indeed, if we analyze
individual transition paths, we find a step-like reorientation. As
shown in Fig. 4, rather than collectively reorienting the dipoles
of the water molecules, a hydrogen-bonding defect moves
through the tube without significant translational motion of the
water molecules, consistent with the static equilibrium analysis
of a water chain in vacuum by Pomès and Roux (33). In the
nanotube system, a D defect [formed by a water molecule
accepting two hydrogen bonds and donating none (34)] is
energetically preferred over an L defect (formed by a water
molecule donating two hydrogen bonds and accepting none), as
is expected from an earlier analysis of the preferred water-dipole
orientation at the openings of the tube (38). Correspondingly,
defects enter almost exclusively from the end at which pore water
donates hydrogen bonds to the surrounding solvent.

The transition-path probability p(TP�Mz) reaches �0.5 near

Fig. 4. Snapshots of water-chain reorientation inside carbon nanotube along the transition path with the highest relative weight, Eq. 5. Blue arrows indicate
the progression of a hydrogen-bond defect along the water chain over a period of 0.7 ps.
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Mz � 0, the maximum expected for diffusive dynamics (Fig. 3),
suggesting that the dipole moment Mz is a good reaction
coordinate. To test whether Mz � 0 captures the transition state
we have calculated the splitting probabilities for 45 equilibrium
configurations with dipole moments near Mz � 0 by using 50
trajectories each with Maxwell–Boltzmann initial velocities. We
find that the distribution of the resulting splitting probabilities is
indeed narrowly peaked at 0.5, with a standard deviation of
about 0.125, close to that expected from random binomial
variations in 50 trials.

To explore whether Mz alone also captures the dynamics of the
collective dipole flip, we have constructed a one-dimensional
Langevin model for motion along Mz. From the equipartition
theorems for the kinetic and potential energies, and the time
integral of the Mz-correlation function of a Langevin oscillator,
we obtain an effective mass of 2.46  10�6 ps2/Å3 and a friction
coefficient of 216 ps�1 by using the simulation data for the
harmonically biased simulation near the barrier top, Mz � 0.
Langevin simulations on the full free energy surface (Fig. 3A)
give a rate coefficient for dipole reorientation of �1/(2.1 ns), a
transition-path duration of �1.6 ps, an average number of
barrier crossings of 6.7 per transition path, and p(TP�Mz � 0) �
0.50, all in excellent agreement with the actual MD data [�1/(2
ns), 2.0 ps, 7, and 0.5, respectively]. That Mz alone is a good
reaction coordinate may appear somewhat surprising, consider-
ing that the dipole moment of the water chain is strongly coupled
to the water solvent surrounding the tube through electrostatic
interactions. Indeed, the rate of dipole reorientation for water
wires across equivalent (6,6) nanotubes in 2D membranes is
much lower because of the high cost of moving an effectively
charged hydrogen bonding defect (34) through a low-dielectric
environment (single transition during �20-ns equilibrium MD;
unpublished results). The solvent-dependent rate without ex-
plicit solvent component in the reaction coordinate suggests fast
solvent relaxation outside the tube. Consequently, solvent effects
are well described by a potential of mean force and an effective
friction for the Mz dynamics. Finally, we note that if the polarity

of the pore is lowered (30), we observe an entirely different
dipole-f lip mechanism in which the tube first empties, and then
water reenters the tube with the opposite dipole orientation.

Conclusions
We have shown that a Bayesian relation between the equilibrium
ensemble and the transition-path ensemble can be used to locate
transition states, optimize reaction coordinates, and estimate
reaction rate coefficients. For a simple model of a three-helix
bundle protein, we constructed a reaction coordinate by varia-
tionally optimizing the weights of a projection onto the amino
acid contact matrix. Starting from a poor initial coordinate with
uniform weights, we obtained a projection that accurately lo-
cated the transition-state ensemble. By comparing protein con-
figurations along the coordinate, we could identify the bottle-
neck of folding as the formation and packing of two helices, with
the third helix relatively disordered at the transition state. We
have also described a simple transition-path sampling algorithm
and tested it for the dipole reorientation of an ordered water
chain inside a carbon nanotube. The transition paths were used
to estimate the rate of dipolar reorientations, giving a result in
agreement with long equilibrium MD simulations.

In the protein-folding example considered here, a good basis
set for the variational optimization of reaction coordinates could
be guessed relatively easily. In general, that may not be the case.
To expand the basis set, linear combinations of projections onto
principal component axes may be useful for peptides and pro-
teins (39, 40); nonlinear functions can be optimized in the same
way if required. In addition, inclusion of solvent coordinates (9,
15, 41) may be necessary to construct a search space that covers
degrees of freedom essential for the reaction kinetics and
mechanism. Applications of our approach to more complex
systems are expected to aid in the development of novel and
unanticipated reaction coordinates.

We thank A. Szabo, W. A. Eaton, and A. Berezhkovskii for many helpful
discussions.
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